59 research outputs found

    Handover Necessity Estimation for 4G Heterogeneous Networks

    Get PDF
    One of the most challenges of 4G network is to have a unified network of heterogeneous wireless networks. To achieve seamless mobility in such a diverse environment, vertical hand off is still a challenging problem. In many situations handover failures and unnecessary handoffs are triggered causing degradation of services, reduction in throughput and increase the blocking probability and packet loss. In this paper a new vertical handoff decision algorithm handover necessity estimation (HNE), is proposed to minimize the number of handover failure and unnecessary handover in heterogeneous wireless networks. we have proposed a multi criteria vertical handoff decision algorithm based on two parts: traveling time estimation and time threshold calculation. Our proposed methods are compared against two other methods: (a) the fixed RSS threshold based method, in which handovers between the cellular network and the WLAN are initiated when the RSS from the WLAN reaches a fixed threshold, and (b) the hysteresis based method, in which a hysteresis is introduced to prevent the ping-pong effect. Simulation results show that, this method reduced the number of handover failures and unnecessary handovers up to 80% and 70%, respectively

    Accelerating Stencil Computation on GPGPU by Novel Mapping Method Between the Global Memory and the Shared Memory

    Get PDF
    Acceleration of stencil computation can be effectively improved by utilizing the memory resource. In this paper, in order to reduce the branch divergence of traditional mapping method between the global memory and the shared memory, we devise a new mapping mechanism in which the conditional statements loading the boundary stencil computation points in every XY-tile are removed by aligning ghost zone to reduce the synchronization overhead. In addition, we make full use of single XY-tile loaded into registers in every stencil computation point, common sub-expression elimination and software prefetching to reduce overhead. At last detailed performance evaluation demonstrates our optimized policies are close to optimal in terms of memory bandwidth utilization and achieve higher performance of stencil computation

    Distortion-Free Watermarking Approach for Relational Database Integrity Checking

    Get PDF
    Nowadays, internet is becoming a suitable way of accessing the databases. Such data are exposed to various types of attack with the aim to confuse the ownership proofing or the content protection. In this paper, we propose a new approach based on fragile zero watermarking for the authentication of numeric relational data. Contrary to some previous databases watermarking techniques which cause some distortions in the original database and may not preserve the data usability constraints, our approach simply seeks to generate the watermark from the original database. First, the adopted method partitions the database relation into independent square matrix groups. Then, group-based watermarks are securely generated and registered in a trusted third party. The integrity verification is performed by computing the determinant and the diagonal’s minor for each group. As a result, tampering can be localized up to attribute group level. Theoretical and experimental results demonstrate that the proposed technique is resilient against tuples insertion, tuples deletion, and attributes values modification attacks. Furthermore, comparison with recent related effort shows that our scheme performs better in detecting multifaceted attacks

    An intelligible implementation of FastSLAM2.0 on a low-power embedded architecture

    Get PDF
    The simultaneous localisation and mapping (SLAM) algorithm has drawn increasing interests in autonomous robotic systems. However, SLAM has not been widely explored in embedded system design spaces yet due to the limitation of processing recourses in embedded systems. Especially when landmarks are not identifiable, the amount of computer processing will dramatically increase due to unknown data association. In this work, we propose an intelligible SLAM solution for an embedded processing platform to reduce computer processing time using a low-variance resampling technique. Our prototype includes a low-cost pixy camera, a Robot kit with L298N motor board and Raspberry Pi V2.0. Our prototype is able to recognise artificial landmarks in a real environment with an average 75% of identified landmarks in corner detection and corridor detection with only average 1.14 W

    Video Genre Classification Using Weighted Kernel Logistic Regression

    Get PDF
    Due to the widening semantic gap of videos, computational tools to classify these videos into different genre are highly needed to narrow it. Classifying videos accurately demands good representation of video data and an efficient and effective model to carry out the classification task. Kernel Logistic Regression (KLR), kernel version of logistic regression (LR), proves its efficiency as a classifier, which can naturally provide probabilities and extend to multiclass classification problems. In this paper, Weighted Kernel Logistic Regression (WKLR) algorithm is implemented for video genre classification to obtain significant accuracy, and it shows accurate and faster good results

    Feasibility analysis of phase transition signals based on e-bike rider behavior

    Get PDF
    This article evaluates the feasibility of two scenarios of phase transition signals, that is, the flashing green together with red–yellow light and the green countdown together with red countdown, at signalized intersections in terms of e-bike rider behavior. An evaluation framework is first proposed. During the phase transition, the stop-go and start-up behavioral parameters are collected at four intersections in Shanghai, China. Sensitivity analysis is then performed to identify the most significant factors that influence the occurrence of traffic conflicts during the phase transition. Based on the above analysis results, case studies were finally done to look into safety performance of the two scenarios of phase tran- sition signals, indicated by the distributions of post encroachment time at the conflict point and the occurring probability of extremely small post encroachment times. Research result shows the transition signal combination of green countdown + red countdown tends to cause traffic accidents more easily and thus less safe compared to the transition signal combination of flashing green + red-yellow. Unlike the conventional method generally based on the deterministic traffic flow theory, the proposed methodology has a wide application. With the aid of it, traffic engineers are capable of designing transition signals in a more scientific manner

    Robust Nonfragile H

    Get PDF
    This paper investigates the problem of robust nonfragile fuzzy H∞ filtering for uncertain Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delays. Attention is focused on the design of a filter such that the filtering error system preserves a prescribed H∞ performance, where the filter to be designed is assumed to have gain perturbations. By developing a delay decomposition approach, both lower and upper bound information of the delayed plant states can be taken into full consideration; the proposed delay-fractional-dependent stability condition for the filter error systems is obtained based on the direct Lyapunov method allied with an appropriate and variable Lyapunov-Krasovskii functional choice and with tighter upper bound of some integral terms in the derivation process. Then, a new robust nonfragile fuzzy H∞ filter scheme is proposed, and a sufficient condition for the existence of such a filter is established in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are utilized to demonstrate the effectiveness and reduced conservatism of the proposed approach
    • …
    corecore